——

Overloading Methods ! /)
ame class that share

[fn Javaitis possible to define two_or more methods within the s
as their parameter declarations are different. When this 1o

‘the same name, as long as .
the case, the methods are said to be overloaded. and the process is referred to as
method overloading. Method overloading is one of the ways that Java implements
polyorphism TPyou have never used a language that allows the overloading

of methods, then the concept may seem strange at first. But as you will see, methog

.. overloading is one of Java’s most exciting and useful features.
' When an overloaded method is invoked, Java uses the type and/or number of
arguments as its guide to determine which version of the overloaded method tg
overloaded methqgg_rr)_l_l_s_t differ in the type and /or number of

actually call. Thus, >d T [
aded methods may have different return types, the

‘their parameters. While overlo . . |
return type alone is insufficient to distinguish two versions of a method. When Jays =

encounters a call to an overloaded method, it simply executes the version of the

method whose parameters match the arguments used in the call.
Here is a simple example that illustrates method overloading:

-
o’

[
// Demonstrate method overloading o
class OverloadDemo 11
void test () {
System.out.println("No parameters");
!

// Overload test for two integer parameters.
void test(int a, int b) {
System.out.println("a and b: " + a + " " + b);

// overload test for a double parameter
double test (double a) ({

—

Scanned with CamScanner

Out_println("double Brah .
system~ 7

a*ai;

a) ;
return

= s OVerload ¢ 5 : .

| clas ic static void main(String args(]) q

pUbl;rloadDemo ob = new OverloadDemo();
ov 3 :

gouble result:

// call all versions of test ()
ob.test();

ob.test (10) ;

ob.test (10, 20);

result = ob.test (123.25)
System.out.println ("

.
r

Result of ob.test(l23.25)

: + result).

e

%

This program ;gén_erates the following output:

/

No parametersg

a: 10

@ and b: 10 20

double 3. 123 .25

Result of ob.test(123.25) : 15190.5625 _
As you can See, test() is overloaded four times. The first version takes no parameters,

the secong takes one integer parameter, the third takes two integer parameters, and the

fourth tajces one double parameter. The fact that the fourth version of test() also returns

#Value js of N0 consequence relative to overloading, since return types do not play a role

Moverloaq resolution, f N " '

M an oy is called, Java looks for a match between the

Ugumentg usede‘ioéflf?h?iz&iils and the]method’s parameters. qu:ever, this match

d not always be exact. In some cases Java’s automatic typg conversions can play a

Tole iy overload resolution. For example, consider the following program:

‘ ‘ ing.
7 AUtomatiC'type conversions- apply tg overload g
C 1 ¢ A ¢ ~
i QV@IlOadDemO'{

i)
VOld test() { (b

}%
J

M |
Scanned with CamScanner

-

Java™ 2: The Complete Reference

9V91vm.nn\.p:.ntin(“Nw paranetera”)
}
4 U\'orlo\d Leot for Lwo integer parameters.
void test(int & int) |
println ("a and b: " + a ¢ w4 B

System. out

./ overload test for a double parameter
/] overdi =

(double a) {

.println("lnside test (double) a: " + ay:

void test
System.out

}

class overload {
public static void main (String args (]3¢

overloadDemo ob = new overloadDemo () ;

int 1 = 88;

ob.test ()i
ob.test (10, 20);

// this will invoke test (double)

ob.test (1)
// this will invoke test (double)

ob.test (123.2);

This program generates the following output:

No pafameters
a and b: 10 20
Inside test (double) 88

a:
Inside test (double) a: 123.2
As you can see, this version of OverloadDemo does not define test(int). The“ﬂi‘:;’
3

when test() is called with an integer argument inside Overload, no matching™
s found. However, Java can automatically convert an integer into a double, and s
“onversion can be used to resolve the call. Therefore, after test(int) is not found,]a\'ded,
sJevates i to double and then calls test(double). Of course, if test(int) had beer efi”

4

Scanned with CamScanner

chaptef 7: A Closer-Look at Methods and Classes 1&1*

e ipstead. Java will employ its automatic type conversions only
L peen® ¢ :

W havt e fg\ll\d' X ' H

» ,‘,.‘:\3\1 et \l * ing supports p(‘wlylnurph|sm”bccaus¢:' it is one way that Java

T ethes ' ‘r.»nnc interface multiple methods” paradigm. To understand how,

e 0y ving. I languages that do not support method overloading, each

erthef \Oti\'t‘;‘ 2 unique name. However, frequently you will want to

L b‘t Tally the same method for different types of data. Consider the

et cs‘:l;‘m‘di'on_ In languages l}\hl do not support overloading, there are

P o valte ‘nm\" versions of this function, each with a slightly different name.

: o Of é the function abs() returns the absolute value of an integer, labs()
.bcoh;w value of a long integer, and fabs() returns the absolute value of a
sthed “alue. Since C does not support overloading, each function has to have
-;_\,_zing'}‘“n‘t e:-en though all three functions do essentially the same thing. This
oW M?;l'ntion more complex, conceptually, than it actually is. Although the
rga!‘;es ﬂ-]e:lcoxklcept of each function is the same, you still have three names to
h,f:;ll‘;:;m\ situation does not occur in Java, because each absolute value method
‘ﬂq‘;‘e ¢ same name. Indeed, Java’s standard class library includes an absolute value
&85 called abs(). This method is overloaded by Java’s Math class to handle all

methad, € : : :)
p"tﬂgfic types. Java determines which version of abs() to call based upon the type of

~"~;leent') X . ‘
N The value of overloading is that it allows related methods to be accessed by use

+¢ 2 common name. Thus, the name abs represents the general action which is being
performed. It is Jeft to the compiler to choose the right specific version for a particular
craumstance. You, the programmer, need only remember the general operation being
ormed. Through the application of polymorphism, several names have been
reduced to one. Although this example is fairly simple, if you expand the concept,
you can see how overloading can help you manage greater complexity.
When you overload a method, each version of that method can perform any
activity you desire. There is no rule stating that overloaded methods must relate to
one another. However, from a stylistic point of view, method overloading implies a
relationship, Thus, while you can use the same name to overload unrelated methods,
youshould not. For example, you could use the name sqr to create methods that return
the square of an integer and the square root of a floating-point value. F:hlt .thestewtwo
Operations are fundamentally different. Applying method overloading in this manner
defeats jtg original purpose. In practice, you should only overload closely related
Operations, :

Ove""ading Constructors

In addition to overloading normal methods, you can also overload constructor :
m?thods- In fact, for most real-world classes that you create: -overloaded LOﬂSlrulCt?fb
¥ill be the norm’ not the exception. To understand why, let’s return to the Box class

“Veloped in the preceding chapter Following is the latest version of Box:

- —eeeEE N,
Scanned with CamScanner

NS e | S

TTE vEmplete Eeference

Qouble depth;

i/ This is the censtructor for Box.
double 4) |

-

fBoxtdouble w, doublie b,
width = w;
helght = hy
depth = d;

i

/) compute and return volume

double volume()
*+ height * depth;

PERPINCIY SR PR SRR

return width

Nt

J

T o
g -

3y

) constructor requires three parameters. This means that

e s g it

As you can see, the Box(
all declarations of Box objects must pass three arguments to the Box() constructor.

example, the following statement is currently invalid:

¥

I Box ob = new 2ox(;;

Since Box() requires three arguments, it's an error to call it without them. This
raises some important questions. What if you simply wanted a box and did not care (g
know) what its initial dimensions were? Or, what if you want to be able to inifializez
cube by specifying only one value that would be used for all three dimensions? As he
Box class is currently written, these other options are not availabletoyou.

Fortunately, the solution to these problems is quite easy: simply overload the
constructor so that it handles the situations just described. Here is a programﬁaf

contains an improved version of Box that does just that:

/* Here, Pox defines three constructors to initialize
the dimensions of a box various ways.
®/
clasg Box {
double width;
double height;
double depth;

Scanned with CamScanner

chapter 72 A Closer Look at Methods apg C'GSses_?gz“ -

r used when all dimensions specified

0
0} Construct double h, double d) ({

Wi
Box(double y
wideh = ¥
peight = b

}

L 4
N
»
-
i
»
b 4
i)
C
r
&
m

) constructor used when no dimensions gspecified.
i1

x() { .
Bo;idth - -1; // use -1 to indicate

neight = -1; // an uninitialized
depth = -1; /1 box

)

// constructor used when cube is created
Box (double len) {
width = height = depth = len;

/{ compute and return volume
double volume() {

}return width * height = depth; i

class Over loadCons ¢

Public static void main(String args(]) {

/!l create boxes using the various constructors
Box mybox1 = new Box (10, 20, 15);

Box myboxo = new Box () ;

Box mycube - new Box(7);

dOUble vol;

/1 get vVolume of first box
Vol = mybox1,volume () ;

SystEm.out.println("Volume of myboxl is " + vol);

Il get volume of second box
Vol = mybox2.volume () ;

SYStem.out_println("Vomme of mybox2 is " + vol);

Scanned with CamScanner

